Statistische Methoden der kleinräumigen Versorgungsforschung
Autoren/Herausgeber: |
Sundmacher, L. Götz, N. Vogt, V. |
---|---|
Erschienen: | 2014 |
Publikationsart: | Articles in Refereed Journals (National) |
ISBN/ISSN: | 1437-1588 |
erschienen in: | Bundesgesundheitsblatt |
Weitere Quellenangabe: | Volume 57(2), Pages 174-179 |
Zusammenfassung
Die akkurate Modellierung kleinräumiger Daten ist eine wesentliche Herausforderung in der Versorgungsforschung. Der vorliegende Beitrag liefert einen Einblick in aktuelle statistische Methoden der kleinräumigen Versorgungsforschung unter Berücksichtigung räumlicher Abhängigkeiten. Räumliche Abhängigkeiten werden durch sog. Spillover-Effekte, z. B. durch Kommunikation zwischen Ärzten oder Patienten in benachbarten Kreisen und nicht beobachtete räumliche Einflussfaktoren, verursacht. Eine nicht angemessene Modellierung dieser Abhängigkeiten zwischen den Beobachtungen kann die Ergebnisse von Analysen verzerren. In der Regressionsgleichung können räumliche Abhängigkeiten über zusätzliche Terme, sog. Spatial Lags oder Spatial Errors, berücksichtigt werden. Anhand einer Beispielstudie wird demonstriert, dass bei fehlender Berücksichtigung die Koeffizienten und/oder die Standardfehler der Schätzung verzerrt sein können. In der kleinräumigen Versorgungsforschung sollte daher – wenn möglich – auf räumliche Autokorrelation in den Daten getestet und das Modell entsprechend adjustiert werden.
Abstract
Accurate modeling of spatial dependencies between observations is a significant challenge in research on regional health-care services. This article provides insight into current methods of modeling relationships in regional health-care service research, with consideration of spatial dependencies. Spatial dependencies may be triggered by spillover effects between neighboring regions and spatially distributed differences in – e.g., morbidity – which are not observable. If not considered in the model, the results of the analyses may be biased. Spatial dependencies can be added to the regression model as a spatial lag or a spatial error term. Using an example study, we illustrate that failing to consider spatial autocorrelation may lead to biased coefficients and/or standard errors. Research on regional health-care services should, therefore, if possible, test for spatial autocorrelation in the data and adjust the model accordingly.